

An Information Architecture for
Sharing and Aggregating

Geospatial Content

Brian Kernighan, Advisor

This thesis represents my own work in
accordance with University regulations.

Chris Karr, Author

1

“A computer terminal is not some clunky old television
with a typewriter in front of it. It is an interface where the
body and mind can connect with the universe and move bits
about.”

- Douglas Adams

“Should we throw another human wave of structural
engineers at stabilizing the Leaning Tower of Pisa, or
should we just let the damn thing fall over and build a
tower that doesn’t suck?”

- Neal Stephenson

“Would you tell me, please, which way I ought to go from
here?”

“That depends a good deal on where you want to get to,”
said the Cat.

-Lewis Carroll

2

Table of Contents

Introduction 3

Architecture and Basic Server 6

GarminGPSTool 24

MycoMap 31

KeyHole 36

Platform Extensions and Future Work 43

Conclusion 49

Appendix I: Acknowledgements 50

Appendix II: Guide to Bundled Software 51

Appendix III: Bibliographic Notes and Endnotes 52

3

Chapter 1:

Introduction

Geographic information systems (GIS) are electronic systems for collecting, storing, and
applying geographic data. GIS systems1 are presently used for a variety of tasks,
including mapmaking and urban planning. These systems are used extensively in
government offices, in private companies, and by individuals. Despite the breadth of
useful applications that GIS systems serve, current applications only take advantage a
small fraction of the potential they offer. This lack of utilization of potential is a result of
many factors, not limited to various incompatible systems, the lack of a comprehensive
and consistent geographic data space, and the difficulty of collecting data in the real
world then importing it into a GIS system.

While current GIS technology consists of a patchwork of independent data spaces and a
relatively small number of GIS vendors, this technology has the potential to alter the way
people work and live. With a little imagination, it is not hard to envision a few potential
applications: self-driving cars that are aware of the road conditions at all times, miniature
location tracking devices that parents use to keep track of their children, and electronic
agent-based automatic delivery services. However, before these applications can become
a reality, a technological foundation must be built from which these applications may
emerge.

The largest obstacle to this vision is the lack of a comprehensive and open geographical
data space. Currently, geographical data spaces consist of private collections of
geographic data in many different formats held by parties that have different expectations
and plans for the data. In an ideal future, there would be a single publicly accessible
geographic data space where private data collections contributed to the larger public data
space. This cooperation and sharing of data would act to towards the benefit of both the
collector and the public. Rather than “islands” of geographic data in different systems and
formats, a comprehensive and consistent geographic data space would consist of data in
an open and widely available format with open protocols unencumbered by proprietary
standards and licensing. The open data and protocol formats would not be controlled by a
single entity, public or private. Rather, consensus regarding the protocols and formats
would be a combination of technical merit and providing for public accessibility.
Furthermore, the physical data storage would not consist of a single monolithic server;
rather it would consist of a network of servers where each server contained a small
amount of specific data that was maintained by the party responsible for the data. While
the data would reside on many different servers, the underlying protocols and formats
would make the task of retrieving data and combining data from multiple servers
convenient and accessible.

4

The applications that would use this geographic data space would be as varied as the
geographic data space itself. It is easy to imagine the traditional mapping applications
that retrieve spatial data and render it in a visual format suitable for humans. However,
the real potential for fully using this geographic data space lies within the applications
that are not directly concerned with immediate human factors (such as usability or
visualization), but serve as building blocks for more advanced applications and devices.

The Purpose of This Project

This project has several goals. The primary purpose is to explore and document the
technical landscape that has traditionally been the realm of commercial GIS vendors and
GIS technology integrators. This project seeks to obtain this knowledge and perspective
by engaging in the design and implementation of a prototype open GIS2 system that
achieves some of the conceptual and technical goals of the Digital Earth vision. This is
accomplished by implementing complementary components such as a geographic feature
server, a range of clients that use the server in different capacities, and establishing
underlying protocols and file formats that guarantee that both the clients and servers can
communicate with a minimum of interference or ambiguity.

In addition to exploring the GIS landscape, this project also seeks to make the knowledge
obtained available to all parties who may have an interest in open GIS technologies. This
is accomplished by providing the source code of all relevant components as concrete
implementations of the ideas discussed within this thesis. In order to provide for the
maximum availability of this code, and to allow others to use and modify the
implementations contained within, technology in this project is based upon open and
freely available technologies when possible. All of the source code of this project’s
implementations is made available in the accompanying CD-ROM, along with the
software packages used during the course of this project.

In addition to providing the perspective and experiences of implementing an open GIS
system and providing the implementation code to the public, this project also seeks to
expand the collective imagination of GIS users and providers by introducing client
applications that illustrate novel and innovative ways to use the power of this platform to
accomplish goals that are beyond the scope of traditional mapmaking and route planning
packages. Hopefully, some of the applications described and implemented within will
provide a spark of imagination that others may use to develop and implement
applications that creatively use this and other open GIS platforms.

Finally, this project humbly hopes to seed some imaginative thinking and application
design by applying all three of the previous goals. This project’s goals will be fully
realized if some developer finds the information within useful and is able to use or adapt
some of the included implementations to accomplish something interesting. By releasing
these components freely, this project seeks to reinforce the social norms that encourage
the open development and cooperation within a developer community. Since much of this
work was built upon the efforts of others who had shared their efforts and ideas, it is only

5

fair that this work is similarly released so that others who find this work valuable may be
enticed to continue this tradition.

Project Implementation

This project takes advantage of several existing technologies. These technologies were
chosen because they were widely available and supported rapid development and
prototyping.

When possible, the Java programming language3 has been used as the implementation
language for components of this project. With the exception of the PocketPC client
component of the KeyHole application, all components were created using Java. Java
provided a clear advantage over other technologies because Sun and other vendors make
robust Java software development kits available for no charge. Java is also widely
supported in the developer community and documentation about various facets of the
language is readily available online and in books. Furthermore, for some of the
technologies that are building blocks of this project, the reference implementations are
available in Java and the Java counterparts are generally more widely supported than the
alternatives. This was an important factor when integrating XML technology because the
XSLT, SVG, and parser technologies are very well supported in the Java community.
Java was chosen as it provides for the design and implementation of complex software
that is often more difficult in other languages.

Throughout this project’s components, Scalable Vector Graphics (SVG)4 technology was
chosen as the foundation which visualization components were built upon. SVG was a
natural choice for this role as the geographic data in this project is primarily vector-based,
and SVG is a format that is designed for vector applications. Furthermore, SVG is well
supported as a both an image file format and as a Java Swing applet when using Apache’s
Batik toolkit5. Because of this convenient duality, it was less programming intensive to
use SVG to natively display vector content.

SVG is one instance of XML technology that was used in this project. Other XML
technology was used extensively in varying capacities. The communications protocol was
written as XML-based exchanges. The common language for describing geographic
features is an XML derivative called Geography Markup Language (GML)6. XML
provided a common foundation that supported operations such as translating one data
format to another, and XML provided a convenient programming interface for storing
information within applications using the Document Object Model (DOM) Java libraries.

These technologies are used in the implementation of the client-server model described
below.

6

Chapter 2:

Architecture and Basic Server

At the heart of any geographic information-sharing arrangement, the central component is
a server that clients query for geographic feature data. The architecture developed by this
project is no exception.

The architecture used is the client-server model where the intelligence of the system
resides primarily at the server and client ends. This architecture is very similar to the ones
used with relational database models, where the client is assumed to be intelligent enough
to generate the exact queries that it wants fulfilled and the server is intelligent enough to
fulfill those queries. The architecture and components described below can be thought of
as extensions to this model where the client application acts as the querying agent and the
server acts as the database fulfilling queries.

However, despite the similarities between this geographic data architecture and
traditional databases, there are a number of important differences that cannot be ignored.
First of all, where traditional databases are designed to be a general-purpose tool for
storing and serving many different types of data, the server in this architecture is
primarily focused towards data with strong geographical and geometrical components.
This leads to certain types of queries that have no equivalent in the traditional database
models such as queries that utilize the relationships between two and three-dimensional
spatial components. Also, differences start to become clear as different types of
geographic features are added to the server’s collection. Where in traditional databases,
the types of data that were part of a database were heavily regulated by the database table
schemas, in this data architecture, the requirement for stringent structure requirements is
loosened to accommodate the property that the definition of an object such as a highway
may be drastically different than the definition of a building or river. This data
architecture must be flexible enough to accommodate many types of feature definitions.
This is not to say that there may be no consistency between any two features (this may be
enforced within classes of features using certain schema definitions detailed below);
rather it is meant to imply that a certain amount of flexibility is required in order to
account for the diversity of real-world geographic feature types.

Perhaps the best way to identify and define a server is to define the operations that a
server must be able to execute. Within this architecture, the server must be able to
execute the following operations:

• The server must respond to a class of queries originating from a client that will
allow the client to query the server for specific geographic features (“Where is

7

Main Street?”), to query for certain classes of geographic features (“Where are all
the interstate highways?”), and to query for geographic features that share
common location attributes (“What are all features that are contained between
27.5° N, 130° W and 27.75° N, 131.25° W?”). Furthermore, since the amount of
geographic data may be overwhelming for a potential client, the server must also
provide filtering services that allow the client to conveniently choose a subset of
features from the queries above by specifying the desired types (“What are all
parks, streets, and airports contained within 27.5° N, 130° W and 27.75° N,
131.25° W?”).

• The server must allow clients to contribute to its geographic feature collection by

providing mechanisms that allow the client to define a geographic feature that is
to be included in the server’s feature collection (“Please add a feature of type
‘street’ to the collection with the attributes A, B and C.”). Furthermore, the server
must provide the mechanisms for clients to modify and delete features within the
server’s feature collection.

• Since the operations above have the potential to be potentially damaging and

resource intensive, the server should implement an access control framework that
allows administrators of the server and its feature collection the ability to restrict
which clients may specify certain operations. This framework is intended to
provide for relatively fine-grained access control and should be aware of different
client types (similar to user agents in web browsers), different users behind a
client (similar to Unix-style users and groups), and the network location of a
client (client’s IP address, hostname, and network). Using these three qualifiers, a
server’s administrator should be able to craft an access policy that is implemented
by the server in order to allow and restrict access to features and operations as is
necessary.

Since the server is delegated the responsibility for storing and providing access to the
geographic data and related operations, the client software has the responsibility of using
the data obtained from the server in a useful manner. Potential applications may include
generating maps from the feature data, providing a user-friendly interface to the server
and accessing and manipulating its data (given the proper permissions), or converting the
data into a different format that other applications may use. The number and types of
potential applications is only limited by one’s imagination, though several will be
described later in this thesis.

Implementation

To implement and deploy a server based upon the requirements listed above, a number of
items must be considered so that the appropriate underlying technologies are used to
construct the server. Given the descriptions above, a number of requirements are evident.

8

Client

GDTP Response

GDTP Server

GDTP Request

GDTP Request

GDTP Response

Network
Listener

XML
Handler

GDTP Request

Authentication Engine

Credentials
Authorization

Request
Handler

D
O

M
 S

tru
ct

ur
e

boundedRequest

featureRequest

createFeature

deleteFeatureXML Nodes

XML Document

Database

SQL

SQL

R
es

po
ns

e
D

oc
um

en
t

GDTP Response

SQL

SQL

Figure 2.1: From the perspective of a client application, all interactions
with the server happen on a request-response basis. Within the server, a
number of steps are required in order to fulfill the request. A request must
be parsed into the necessary DOM data structures, the DOM structure
must be parsed, and parameters for requests are obtained from the DOM
structures. These parameters are provided to the appropriate request
handler that interacts with the database to fulfill the request.

9

1. To facilitate communications from a wide variety of clients, the server must
be accessible outside the physical host on which it is running. This condition
suggests that the server must be networked and be able to communicate over
existing networks. Given the overwhelming adoption of the Internet and
related technologies, the server should be able to communicate via this
network using standard network conventions.

2. The range of client applications extends from small, embedded tracking

devices as described below to large applications involved in the analysis of
data obtained from the server. Thus, no assumption about the types of
hardware or software can be made, and the server should attempt to
communicate with as wide a variety of applications and platforms as possible.

From the perspective of this project, a number of optional items are also desired.

1. The server should incorporate existing commodity technology where
appropriate in order to minimize implementation time. Furthermore, any
technology utilized should be freely available (no cost and no burdening
intellectual property constraints) as to not erect unnecessary barriers to
development.

2. The server should be hardware and operating system independent in order to

be able to adapt to changing hardware and software platforms and to take
advantage of trends such as changing hardware and software platforms.

3. Installation and configuration of the server should be relatively simple and not

require the server administrator to master an obscure command language.
Furthermore, operations such as managing users and permissions should be
easily accessible from whatever interface is provided for configuration and
management purposes.

Given these requirements and optional features, this server is designed to operate from a
Java-based platform, utilizing a MySQL database7 for data storage and internal queries,
with XML being the basic language in which queries, responses, and feature data
definitions are encoded.

MySQL is used for internal data storage as it provides a straightforward interface for
accessing data (SQL) and an efficient and robust engine for manipulating and retrieving
data. While it may seem counterintuitive that a standard relational database is used while
the server must be more general, an internal solution was developed where the flexibility
of data types can be translated into standard MySQL tables and rows. Furthermore,
MySQL offered an advantage in that it is available freely online and includes the optional
InnoDB8 backend, which was used extensively within the server for better performance.
This is described in more detail below.

10

XML is an attractive technology, as it is a standard platform-agnostic encoding
mechanism that is capable of encoding complex objects in a manner that is intelligible to
both man and machine. The XML derivative GML is used as the primary method for
encoding feature data. An original protocol called Geographic Data Transport Protocol
(GDTP) was developed in order to encode communications between clients and servers
and to encapsulate GML data. Using the web as an analogy, GDTP is to HTTP as GML
is to HTML.

Finally, in addition to the technologies above used in the core server component, an
optional web-based configuration component is included in order to provide a convenient
and straightforward interface for configuring and managing the server. This is
accomplished by including a simple Java-based web server that has access to
configuration properties and runs in parallel to the main server. This is described below
in more detail.

Server Overview

The design of the main server is such that it can be subdivided conceptually into two
separate servers9. The main functionality is contained within the GDTP server. This
component is responsible for accepting GDTP queries and returning appropriate
responses. Parallel to the GDTP server is an HTTP server that provides an HTML
interface for configuring and managing the server10. The bulk of the functionality is
contained within the GDTP server.

The GDTP server consists of a multithreaded server that spawns a new thread in order to
handle incoming requests. The server listens on a dedicated port (9000 by default), and
once an incoming request is received, it spawns a new thread to handle the request. The
incoming request is parsed and passed to an XML handler that is responsible for
verifying that the request is in proper form. If the request is found to be in good form, it is
translated into an XML DOM tree, which is passed to a GDTP request handler11.

The bulk of the functionality is contained within the GDTP request handler. The request
handler parses the request’s XML DOM tree and executes the query contained within. In
cases where feature data is required, this component communicates with the external
MySQL database to obtain the requested feature data. This data is parsed and inserted
into another DOM tree that represents the eventual response that will be returned to the
client. Once the necessary operations have been carried out and the response DOM tree
generated, the GDTP handler translates the DOM tree into textual XML data encoded in
ASCII that is returned to the calling XML handler. The XML handler returns the XML
document to the threaded network layer, which transmits the response to the client. The
connection is closed and the thread is killed.

In addition to the socket interface provided to applications, an administrative web
interface is included in order to assist server operators with the configuration and
management of the server. Access to the administrative functions is limited to

11

administrative users. Upon initial installation of the server, a default administrative user
is created with a default password that can be used to set up the server and delegate
administrative responsibilities amongst other users. There are three main tasks that
administrators can engage in: create new user accounts and set up account information,
manage feature data, and configure details such as port numbers and server names.

Regular users can also use the web-based interface, but they are limited to modifying
their own account information and managing their features. Future versions may include
tools that enable users to grant ownership of features to other users and apply finer
grained permissions provided by the underlying architecture.

Development Server Implementation

For the development of this server, a personal computer using the Windows 2000
operating system was used. The machine used a 400 MHz Pentium II CPU with 384 MB
PC100 SDRAM. Installed alongside Windows 2000 was Sun’s Java2 1.4 software
development kit and MySQL-Max 3.23. In order to obtain XML functionality within
Java, the Apache Project’s Xerces12 toolkit was also installed. Connections to the MySQL
database were established using the MM.MySQL JDBC drivers.

Since the performance of the database becomes the largest bottleneck in this system as
the data collection grows, MySQL was configured to use the InnoDB backend to store
and retrieve data because it is considered to be one of the fastest relational database
backends available. For the purposes of developing the server, MySQL was installed with
two gigabytes of dedicated disk space and two hundred megabytes of dedicated memory
for the InnoDB backend. In a typical production environment, the resources dedicated to
the database would be larger, with the RAM dedicated to MySQL occupying seventy to
eighty percent of the available physical memory. Since the development server was to be
used for other purposes, these quantities were scaled down enough to accommodate
approximately fifteen to twenty counties worth of TIGER/Line13 geographic data.

For the Java-based components, the defaults specified by Sun’s Java Virtual Machine
were used.

Database Architecture

The database backend supporting the server is MySQL with the InnoDB backend
included. This configuration was chosen as it accommodates large tables well with better
than average performance. The feature data in the database was separated between
geographic and non-geographic components. The tables containing the geographic
components were optimized through indexes to perform well for spatial queries, and
tables containing the related data required to reconstruct the XML data structures were
kept in other tables that contained the information required to build trees from bottom-up
and top-down approaches. Furthermore, server configuration data is contained in the

12

database. Maintaining the configuration data with the database allows server
administrators the ability to update and apply changes in the server configuration without
having to restart the server in most cases. In addition, information that is used to
implement the access control framework is also within the database, including user
information and host and network access tables. In short, the GDTP server is heavily
reliant upon the database for much of the information it uses during the course of
operation.

While a special-purpose spatial database could have been chosen as the backend for the
computationally intensive spatial queries, a general relational database was used because
the MySQL relational database offered many advantages while not incurring many
disadvantages. In future implementations of this server, as spatial queries become more
complex and demanding, it will become necessary to switch to a spatial database in order
to accommodate the queries. This will be discussed in more detail below, along with a
possible migration path from storing geographic data in traditional relational databases to
storing the data in special purpose spatial databases. However, MySQL and InnoDB were
sufficient for the purposes and scope of this project.

The combination of MySQL and InnoDB in this project was chosen because the
combination offers many advantages above other freely available database systems.
MySQL was chosen initially because it is relatively simple to set up on different
platforms and its performance is excellent. Since this project did not require some of the
more advanced features of modern databases such as transactions and versioning,
MySQL’s tradeoff of these features in order to achieve superior performance did not
adversely affect this project in any way. Furthermore, with its integration with InnoDB,
no alternatives provided the performance and ease of use and deployment offered by
MySQL.

InnoDB tables were used instead of the default MyISAM tables because they offer
greater performance than the MyISAM tables when databases become larger and larger.
Since the number of features in the server is in of the order of millions, it was expected
that the InnoDB backend would handle these queries better than the default backend.
Benchmarking and timing the queries against both backends revealed that InnoDB was
several orders of magnitude faster than MyISAM for datasets containing as many as
fifteen to twenty counties worth of data, consisting of approximately one million points
per county.

The collection of the tables contained within the database consists of several operational
data tables and two main content tables. The operational data tables contain configuration
information, user definitions, group memberships, permissions, host access tables, and
network access tables. This information is used to provide for functionality such as access
control lists, associating features with users, allowing users to form groups in order to

13

Users

UserID

Username

Passwod

RealName

EMail

URL

Description

IsAdmin

FeatureTypes

FeatureTypeID

FeatureTypeName

Description

Permissions

PermissionsID

AccessRight

MemberType

MemberID

Features

FeatureID

FeatureTypeID

ParentFeature

DataContent

OwnerID

PermissionsID

GeoData

GeoDataID

ParentFeature

X

Y

Z

Groups

GroupID

GroupName

DescriptionMembership

GroupID

UserID

HostAccess

HostID

Host

Permissions

NetworkAccess

NetworkID

Network

Permissions

Config

ConfigID

VirtualHost

ServerName

ServerSocket

ServerSoftware

WebSocket

Figure 2.2: This diagram illustrates the table schemas and the
relationships between tables. Bold text on a grey background represents
the name of the table, and lines connecting individual components
represent foreign key relationships between separate tables.

14

share data, and information about what hosts and networks are allowed or denied access
to the server.

The configuration table consists of rows that represent different virtual hosts served by
the GDTP server. Since the virtual hosting functions are not fully developed at this point,
this table consists of a single row. Within this row, the server name, server socket, server
software, and web sockets are set. The server name is used to provide a descriptive
identifier to clients. For example, a test server could have the name “Development
Server, Version 0.57” or something similar. The server socket parameter determines on
which TCP port the server accepts GDTP requests. The server software is used to provide
software information such as software name and version. Finally, the web socket column
determines which TCP port is used by the web interface.

The user definition table strongly mirrors the idea and implementation of the standard
Unix passwd file. Each row in the table corresponds to an individual user. The required
fields for each user are a unique user identifier, a username, a password, and whether a
user may access the administrative functions of the server. Optional fields are the user’s
real name, an e-mail address, a URL, and a description. The information in this table is
primarily used to implement a username-based access control framework where users
may be granted access to restricted features by providing their username and password as
credentials.

Expanding upon the implementation of users, the database also provides the tables
required to associate users with groups. The main groups table consists of a collection of
rows, where each row is a different group. The information associated with a specific
group is a unique group identifier and name. An optional description may be provided. In
addition to the main group table, a membership table shows which members are members
of which groups. The membership table consists of two entries, a numeric user identifier
that corresponds to a user’s user identifier and a numeric group identifier that
corresponds to a group identifier. If a user is a member of a group, a row in the database
can be found that contains that user’s unique identifier and the associated group’s
identifier.

A table that contains the host access information is also within the database. This
implementation is based upon the Unix hosts.allow and hosts.deny files that specified
host access permissions through hostnames and IP addresses. In this project, the host
access table serves the same purpose. The host access table always has at least one entry
that specifies the default access permission: allow or deny. Additional entries containing
a hostname or IP address may be added to the table in order to create exceptions to the
default rule. Thus, if the default access is allow, to deny a host access to the server, a
deny entry must be made in this table. Conversely, if the default access is deny, entries
must be added to the table granting access to the server from other hosts. A similar table
exists for networks, where a network can be specified by domain name or IP address
range. The process for allowing and denying access is identical to the process used in the
host access table.

15

The permissions table is used to set permissions upon different features. The Unix
security model has heavily influenced the model within the server. Access rights can be
set that allow users to grant or deny access to specific users, groups, or general users.
Currently, the permissions framework is not fully developed and this table is provided for
the future implementation of a more robust security model.

While the tables described above contain meta-data for server operation and tasks, the
tables below contain the bulk of the content that the server manages. The first content
table is the feature types table. This table is used as a catalog of features that the server is
aware of and features that are present within the database. Each feature type has a unique
numerical identifier, a name, and an optional description. By default, there is always an
entry for the “gml:coordinates” type, as that feature type is the one used to store
geographic data points. Other feature types may be added as needed. However, for all
features within the database, an associated feature type must be present for the feature
and all sub-features.

One of the two main tables for storing content is the features table. The features table
contains all of the non-geographic information that is associated with geographic
features. This includes information such as feature names, descriptions, and XML
composition. This table was designed so that the tree structure of XML documents could
be preserved in a flat table space. This is accomplished using a recursion-based
implementation of the feature table.

Each feature has a unique numerical feature identifier, a feature type identifier, a parent
feature identifier, a data content field, an owner identifier, and a permissions identifier.
The feature identifier is a unique integer used to reference a particular instance of a
feature in the database. A feature instance may be one of two types: an element node
containing sub-features of different types, or a content node that has no child features.
With the exception of feature trees that terminate with a “gml:coordinates” node, all
terminating leaves of a feature tree are content nodes. For example, a node that
represented the name of a feature would consist of a feature type that corresponded to a
“gml:name” type in the feature types table, a parent feature identifier that contained the
parent of the current node, and the actual name of the feature stored in the data content
field. Within the table, there would be no nodes that referred to the name node as a parent
node. However, if the node is a parent node, the data content field would be empty, and
one or more nodes would refer to the current node as a parent node. This structure allows
for XML data to be translated into flat tables, and using a series of SQL select queries,
the server can rebuild the original XML structure.

This model changes slightly once geographic data is being accessed. Where all data for
all nodes with the exception of “gml:coordinates” is contained in the features table, all
data associated with gml:coordinates nodes are contained in a geo-data table. This table
consists of a collection of rows representing geographic points composed of a unique
identifier for a single point in space, a parent feature that the point belongs to, and X, Y,
and Z coordinates of the point. All points that belong to a single gml:coordinates node
have the same parent identifier.

16

The reason for the separation of these content types into two different tables is because of
different types of queries that use the data differently. Since this is a geographic database,
queries of features contained within a bounded area are common for mapping and other
purposes. Since the data that is evaluated in this context is the geographic data,
implementation is simpler by maintaining this data separately from the other XML
content. Furthermore, large increases in performance are realized as the database can
index the content along the X, Y, and Z-axes.

This design works well for purposes intended, but there are still a few problems. The
primary problem is that as the number of features in the database grows, the access time
is degraded. This degradation is amplified in insert operations after a database is indexed,
as the database must rebuild the indexes for each insert. Furthermore, as the database
grows, a ramping-up period is required to allow the database to swap in data from the
permanent storage into physical memory. This effect is most noticeable when the
database has been primarily querying a specific geographic locale, and then is
immediately asked to start working on a different locale. This behavior was noticed when
querying a database that was about two gigabytes in size, including tables and index
structures, on a computer that limited the database to two hundred megabytes of
dedicated physical memory.

While some problems persist, a number of solutions are available to deal with these
problems. These solutions are discussed in more detail below. Despite these problems,
this database architecture is very responsive for smaller to medium data sets, and it
provides a good general interface for the Java components of the GDTP server to query
and manipulate features efficiently. Also, by separating the general XML content from
the geographic-specific content, this architecture is able to incrementally adapt to
emerging spatial database technologies by allowing these new technologies to substitute
for the geographic components of the system. This is also discussed in more detail below.

Geographic Data Transfer Protocol (GDTP)

The Geographic Data Transfer Protocol (GDTP) is an application-layer protocol that
allows the GDTP server to communicate with client applications. Its design is heavily
influenced by HTTP, though some differences become evident when it is used for spatial
queries.

A GDTP session consists of a request sent to the server from a client, and a response
returned by the server. The protocol is XML-based and all GDTP communications are
encoded as an XML document. The typical structure of a request document consists of
two parts, a metadata part and an actual request. The metadata component of the request
contains information such as user agents, username / password credentials, and other
information that is useful to the server, but not central to the request. The actual request
can consist of a combination of any of the following request types: create a feature,
request information on a certain feature, request information on all features contained
within a certain bounded area, delete a feature, modify a feature, search for a feature

17

conforming to a certain search criteria, and request server information. For requests that
are inherently read-only, such as request a single feature or a geographic area request,
username and password credentials are optional depending upon the access permissions
of the features identified by the request. For requests that require write access, such as
creating or deleting a feature, supplying credentials is mandatory since such operations
usually require privileged access.

A response returned by the server consists of a status code that identifies the success or
failure of an operation, and the data requested. Since the geographic data contained in a
GDTP response is GML, a GDTP response document encapsulates a GML document
containing the results of the request.

GDTP was designed as an XML-based protocol for a variety of reasons. Using XML as
the base of the protocol reduces the number of errors that can be introduced by building a
request or response document when applications apply XML parsers. Furthermore, since
the data being requested is returned in XML, it made little sense to use a non-XML text
or binary protocol to encapsulate the information. On both the client and server side,
XML is easier to parse using XML toolkits than creating custom string parsers that each
application would implement. Finally, XML provides a strong advantage since GDTP
documents are XML documents, so they can be parsed into other document types simply
by using an XSLT14 parser and stylesheet. This allows applications to easily convert
GDTP output into formats such as PDF and SVG.

CreateFeature Query

The createFeature query type in GDTP is used by applications that submit geographic
content to the GDTP server. Typically, a createFeature request contains username and
password credentials to identify the owner of the new feature, and embedded in the
request is the GML definition of the feature itself.

The server uses a simple process to insert the new feature into the database. Once the
server receives a GDTP request, the request is translated into an XML DOM object. The
server finds the DOM node that corresponds to the root of the encapsulated GML
document and passes the node structure to a function that recursively walks the tree and
inserts the node and its children into the database as needed. Regular XML content is
inserted into the features table, and coordinate data is inserted into the geographic data
table. Upon the successful creation of the feature in the database, the server returns a
success status code and the numeric identifier of the new feature.

18

FeatureRequest Query

The featureRequest query type is used by applications that allow users to select single
features from the database regardless of any geographic qualities. Users may request the
feature based upon the numeric feature identifier, or if the feature contains a gml:name
component, based upon the name of the feature.

In this operation, the server requests the feature based upon the criteria given, finds the
top-level parent of the feature (referred to as the root node), and builds the GML
representation by recursively walking down the virtual tree structure in the database and
building a real tree structure in XML. Once this process is complete, the tree
representation is embedded into an existing DOM tree containing the response document,
which is then converted into a text form of XML that is transmitted to the client.

The difference between requesting a data based upon a numeric identifier and a name is
that in the cases with the numeric identifiers, the identifiers reference the root node, and
the tree is immediately built downwards from that node. If a name is used, the name node
is identified first, then the root node is found, then the tree is built downwards. While this
is less efficient, the performance penalty of finding the root node is generally small
enough to justify the inclusion of this operation for the users’ convenience. Also,
querying features by name can return multiple features with the same name. If a query
requests a feature called “Main Street”, all “Main Streets” in the collection will be
returned.

BoundedRequest Query

The boundedRequest query type is probably the most often used. It permits an application
to search for a collection of features that is within a certain geographic area. When
combined with filters, this query type provides users with a simple and powerful tool for
obtaining location data.

A bounded request consists of a mandatory gml:Box element that outlines the rectangular
area that is to be searched. In addition to the gml:Box, applications may provide a filter
specification that limits the types of features returned and limits the work to those feature
types, providing a significant improvement in performance for large areas with many
feature types.

Since this query type queries more features than any of the other types, bounded request
queries are most sensitive to database performance and other factors. In the database
design described above, the majority of indexing and structuring decisions were made to
optimize the performance of this operation.

More steps are required to complete this operation than the other operations. Upon
receiving the request, the request is parsed into a DOM structure that is used for
navigation. The gml:Box element is located and the range of the X and Y coordinates is

19

GDTP Server

Feature Database

1. The GDTP server creates the
SQL se lec t s ta tement tha t
queries for all geographic data in
a c e r t a i n r a n g e f r o m t h e
GeoData table. The feature
database responds with the
parent identifiers of the points
within the specified range.

SQL select on

GeoData

Points within

range

GDTP Server

Feature Database

2. The GDTP server then issues
a series of select statements to
the database to obtain the adam
node for the points obtained in
step 1. These nodes are stored
in a list for further work.

Series of selects

to obtain root nodes

Root nodes

GDTP Server

Feature Database

3. After obtaining the adam
nodes, the GDTP server issues
select queries to the database to
build the features starting from
the top level downwards. After
these features are built, they are
r e t u r n e d t o t h e o t h e r
components of the GDTP server
to be processed and sent to the
client.

Series of selects

to build features

Feature data

Figure 2.3: The communications between the GDTP server and the
feature database are required to complete a boundedRequest.

20

extracted. After extracting these parameters, a SQL query selects all parent identifiers of
the coordinates in the geographic data that are within the bounded area. After the parents
of the points are located, the filter is applied (if present) to select the types desired. After
this list is built, the node features are found, and then the features are built downwards (as
in the featureRequest) and included in a new DOM structure. Once the DOM structure is
complete, it is merged with the existing response DOM structure, converted into textual
XML, and then returned to the client.

A number of design decisions were made in order to balance programmability and
performance in this query. The filter, as implemented, operates on the Java side of the
server, discarding feature types that were not requested. It could have been just as easily
implemented as an extension of an SQL query, but the overhead of the joins and
additional comparisons in the SQL engine would further impact the performance of the
database. Since the performance bottleneck at this point is the database, the decision to
burden the Java side of the server with this functionality was made to distribute the load
of filtering to the less burdened side.

Another decision was whether to incorporate the existing routines that find the root
features into this query. These functions were designed to work at any level of the feature
tree and find the root of the tree. Performance in this phase of the process may be
improved by taking advantage of the fact that the tree is walked from the bottom
containing the gml:coordinates node to the top. This provides a ripe target for caching
data. If this property could be exploited, the elimination of the duplicate SQL queries
rebuilding the features would result in a significant savings. An alternative approach
would be to build the tree from the bottom up, filling the side branches as necessary, thus
incorporating the root feature discovery and tree building in a single step. As the
implementation is now, it uses the less efficient process described above.

Currently, the bounded request only uses a rudimentary geometric operation to find
features. This method excludes some features in cases where a feature may be in the
bounded area, but not contain any definition points in the area. This is best imagined as
executing a query that is completely inside a park, yet does not return the park because
the defining points surround the requested area. One possible improvement to this request
is to expand the area that is actually requested by a certain percentage, increasing the
chances that some of these definition points are captured. However, this is a flawed
solution because on a small enough scale, it probably will not find the desired features,
and on a large enough scale, it drastically increases the amount of work required for the
database and server. The best probable solution to this problem is to store the geo-data in
a spatially aware database that provides the appropriate data types and geometric
functions to query these data types. This also can reduce the limitation that the bounded
area be rectangular. This is discussed in more detail below.

21

DeleteFeature Query

Compared to the boundedFeature type, a deleteFeature query requires fewer
computational operations. The purpose of this query type is to delete a feature based upon
its numeric identifier. To delete the feature, the appropriate credentials must be supplied.
The majority of the implementation is identical to the featureRequest query, but instead
of building the feature top down and returning it to the client, this query deletes the
feature from the database top down, erasing the feature from the collection. A status code
returns the final status of the operation, including the identifier of the feature deleted.

The justification for only allowing numeric identifiers to specify the feature is based on
the previous observation that different features may share the same name and other
attributes. Since the only data that is guaranteed to be unique to each feature is its
identifier, this is the only element that can be used to delete an element without
inadvertently deleting other features.

ServerInfoRequest Query

The serverInfoRequest query is a request that does not deal with features in any way. This
query type is intended to be a tool for a server to identify itself and what capabilities it
supports. This query returns information such as the server name, the GDTP server
software, and additional information such as whether it supports compressed or encrypted
transmissions.

This query type is primarily intended to provide information about server capabilities as
incremental changes are implemented. This allows clients the ability to customize their
behavior in order to adapt to a wide variety of servers that may be running different
versions of the server software that may have varying levels of implementation of
advanced features.

Future Work

This server is hardly complete with respect to the original feature set envisioned, and
much future work could be done in the areas such as virtual hosting and a more robust
permission framework.

In addition to software features, a future version of the server and GDTP protocol would
benefit from the implementation of a robust modifyRequest request type that would allow
for editing of features currently in the server’s collection. Deleting a feature and
recreating an almost identical feature with the desired changes currently replicates this
functionality. This will suffice for some for some applications, but before serious
adoption of this standard can happen, a robust implementation for modifying features
must be in place.

22

In addition to a modifyRequest request type, this server would greatly benefit from the
implementation of a searchRequest request type. The current featureRequest provides a
limited searching function by returning features with matching gml:name sub-features.
However, some applications will require a searching mechanism that is more flexible
than the one offered by the featureRequest query type. Ideally, a searchRequest query
would provide a mechanism for doing numerical comparison operations in addition to the
traditional regular expression searching on text. In addition to searches on individual
features, a robust searchRequest request type would include support for Boolean
operators such as AND, OR, and NOT that would combine individual search parameters.

In order to attain the goals stated earlier about implementing a unified geographic data
space, future efforts must be applied towards adapting GDTP and the server to fulfill
Web Feature Server (WFS)15 requests. WFS is a developing specification championed by
the OpenGIS Consortium. OpenGIS has garnered the support of a wide variety of public
and industry groups and any geographic protocol that will be adopted as a public standard
is likely to be an OpenGIS protocol.

In many respects, WFS mirrors GDTP functionally. However, since this project was
started before WFS was made public, it was deemed more productive to continue using
GDTP instead of WFS within the server. Furthermore, since WFS is still a developing
protocol, it is very much a moving target with respect to implementation of features.
Rather than attempt to maintain constant compatibility with WFS, the decision to develop
a parallel protocol was made in order to focus on implementing features into the protocol
that were required for some of the client applications.

While the underlying architecture of the server was to maximize the number of features
that could be included, the programming components used in the implementation can be
adapted to achieve compatibility with WFS. Some things, such as existing request and
response types, will be easily adapted to WFS, while other features such as locks and
transactions will need to be implemented anew within the current server.

In addition to implementing new query types and achieving WFS compatibility, the
server would benefit from further work on fundamental items such as database
compatibility, security, and performance. Currently, the server is designed to work with a
MySQL database. Other databases are readily available, and work towards creating a
database-neutral architecture using a plug-in architecture for different databases would
greatly supplement this server. This type of architecture would provide an interface
where the server can use different database configurations and technologies. This plug-in
architecture could enhance performance by allowing spatially enabled databases to be
used in place of standard relational databases. Furthermore, the plug-in architecture could
be adapted such that distributed database configurations are available to the server.

In the areas of security, work towards verifying the security and access control
frameworks would benefit the server. Currently the access control frameworks are less
than acceptable for use in sensitive areas, and the inclusion of security technologies
within the server would boost security. Furthermore, the server could be extended to

23

support an additional GDTP port that would accept encrypted communications using
SSL16 technologies.

Finally, general performance enhancements such as caching and prediction algorithms
can be included to adapt to changing workloads and alleviate performance issues in other
areas. For example, a server that was intelligent enough to store frequently requested
features could enhance performance by caching the feature and avoid requesting the
feature repeatedly from the database. Other changes focused upon performance, such as
predictive algorithms, could potentially improve performance and quality of service.

24

Chapter 3:

GarminGPSTool

GarminGPSTool is a Java Swing application that is a visualization and data access
companion to Garmin’s line of commodity GPS receivers17. This application is designed
to provide an intuitive interface for downloading and visualizing native Garmin data
types on a computer system. The application is capable of communicating with Garmin
GPS receivers using Garmin’s proprietary device protocol18, querying the receivers and
receiving and translating GPS data from a proprietary format into a GML-compliant
version of XML.19

The user interacts with the application via standard Swing user interface components and
an embedded SVG viewer. The application contains a vector-based world map that is
initially rendered upon application startup. Data downloaded from the GPS receiver is
overlaid onto the map in order to aid in visualization. Communications between the
application and GPS unit are conducted over a standard RS-232 serial line. In addition to
the data download and visualization features, this application also allows users to directly
upload GPS data to GDTP servers as Garmin data types, or through translation servers
that translate the Garmin data types into actual feature data. Furthermore, users may
download data from these servers and store the data in the GPS unit for offline use.

The intended audience for this application is the owners and enthusiasts that use Garmin
products to navigate and collect geographic information. It is intended to provide a free
software solution for those who wish to access GPS data directly from their desktop or
laptop computers. Through the use of networked servers, this software is also targeted
towards users who desire a network-based solution for downloading and sharing GPS
data.

Implementation

GarminGPSTool is built using a variety of Java2 libraries provided by various parties.
The interface is designed and implemented using Sun’s standard Swing GUI components.
Communication between the application and the GPS device is accomplished using a
combination of Sun’s JavaComm API20 and a custom network layer that serves to
translate the raw byte data into usable objects. These objects are stored internally using
the Apache Project’s DOM-based Xerces XML engine. This engine allows the
application to conveniently manipulate the data into forms that are appropriate for
visualization, storing in files, and transmitting over a network. The visualization
component is built using Apache’s Batik SVG toolkit as a Swing widget that displays and
allows users to manipulate the display of the GPS data. This component also allows users

25

the ability to save their waypoint data in graphical formats including SVG, PNG and
JPEG. The combination of these technologies within this program supports different data
formats and provides an intuitive and flexible way to interact with the downloaded data.

The Swing components of this program serve as the framework for the application. The
Swing components dictate the look and feel, in addition to providing standard
functionality like configuration and file-system access components. The application
displays a toolbar and a map that spans the width of the application. The toolbar provides
the expected functionality such as opening files, saving files, and accessing the
configuration framework. In addition to the main application window, a tabbed
configuration child window allows users to conveniently set configuration options
including communications and network server parameters.

Embedded within the Swing framework is a JCanvas component that is responsible for
displaying vector data such as the base map and downloaded GPS data. This is
implemented using an SVGCanvas component that is part of the Batik toolkit. Using this
component instead of writing a custom extension to the standard Swing JCanvas
component provides for advanced functionality within the component, like zooming and
resizing, that allows for better manipulation and visualization of the vector data.
Furthermore, by using the SVGCanvas component, implementing features like saving
entire maps as SVG and exporting snapshots as standard raster image files is easier
because complementary Batik technologies are designed to work with the SVGCanvas
components.

The internal XML engine provides SVG data to the display component. This engine is
implemented using Apache Xerces technology. This layer of the application is
responsible for storing downloaded data internally and exporting the data to other parts of
the application in SVG format, GarminGML file format, or GDTP network format. The
internal data structure used to store GPS data is an XML DOM document. Initially, the
document is empty. As the user retrieves data from the GPS unit or the network, the
document is populated with nodes representing the different features. Once this document
is populated enough such that user desires to visualize the data or transfer it to a GPS
unit, the document is translated into an appropriate format. For example if the data is
being manipulated for visualization, the DOM document is processed to produce the
necessary SVG elements that will be rendered by the Batik SVGCanvas component. If
the data is to be transferred to a GPS unit, the data is translated into a byte stream to be
sent over the RS-232 serial link. This internal implementation allows for the internal data
to be translated into any number of formats using custom translation routines or through
the use of commodity XML technologies such as XSLT. A feature that may be added is
one where a user may specify an XSLT stylesheet that can be used to translate the
internal data into arbitrary data formats specified by the user.

26

Figure 3.1: These are sample GarminGPSTool screenshots. The lines on
the map on the top illustrate the approximate vicinity of the downloaded
data. Users can zoom to the center of the crosshairs in order to obtain a
more detailed view such as bottom image.

27

A serial networking component sits between the rest of the application and the Garmin
GPS device. This layer is responsible for translating between the internal DOM data
structure and the device. At the most basic level, communication between the application
and the device is a raw byte stream that is transmitted via the serial communications port.
Garmin has provided specifications that allow application developers to translate between
the raw byte stream and features commands. In this implementation RS-232 serves as the
physical layer and Garmin’s protocol serves as the data link layer. Raw bytes from the
RS-232 are translated into packets that contain byte payloads of data for the application
layer. The application layer implements various functionalities including managing data
types and obtaining real-time location information. A collection of data types are defined
that represent command structures and feature objects. Finally, a number of application
protocols dictate in what order various data types are sent and how to handle data
transmissions and error correction.

Within this framework, the JavaComm libraries provide the API for reading and writing
raw bytes from the RS-232 connection. On top of JavaComm, custom Java classes have
been implemented that implement the link protocol and translate between packet streams
into usable objects, complete with methods. Furthermore, by utilizing Garmin protocols
such as the GPS capabilities functionality, this layer is able to dynamically determine
which data types are appropriate for a given model line. This provides a convenient
method of adding support for the entire Garmin GPS line, even though the data types
supported among different models may be significantly different. Presently, data types in
the eMap and 12XL models are supported.

Usage Details

The GarminGPSTool application provides custom visualization of GPS data and a simple
and straightforward method for accessing and saving data. The user interface
implementation maximizes functionality while providing a standard and intuitive way to
access the application’s functionality.

From a user’s perspective, the application contains two main components upon startup.
There is a standard toolbar at the top of the application, and a graphic below the toolbar
that contains a world map. The toolbar contains four main items: File, GPS, Tools, and
Help. The File menu contains functionality for saving and archiving data, including items
for saving data to XML format or as an SVG file, and uploading data to a GDTP server.
These items operate in the same manner as in the majority of GUI applications, and usage
should be intuitive to users familiar with other GUI applications.

The GPS menu contains items that allow the user to interact with the GPS unit. Upon
initial startup, the Download Tracks and Download Waypoints items are grayed out,
leaving the Initialize GPS and GPS Info items available. The GPS Info item brings up a
small window that allows a user to see device-specific parameters of the connected GPS
unit. These parameters include the supported native data types, supported
communications protocols, and software names and versions. This item is primarily

28

intended to be a general information tool that can communicate across the entire line of
Garmin GPS receivers, and users with unsupported units can use this information to
submit requests for support in the next GarminGPSTool release. The Initialize GPS item
is used by the application to query the GPS unit and determine the data types on the
connected unit so that the appropriate type-conversion methods are used in the
application. Once the data types have been determined, the application is aware of
enough information that it can communicate with the GPS receiver properly. From the
user’s perspective, the Initialize GPS item is used to establish communications and
enable the Download Tracks and Download Waypoints items to become usable. These
two items are provided so that the user may select which data types are to be downloaded
into the application. However, the user does not see the new data types represented until
they select Update View from the Tools menu item.

The Tools menu contains functionality for the user to regenerate the world map with the
downloaded data types rendered upon the map. It also provides tools for resetting the
view to the original world map and for bringing up a configuration dialog. If a user has
downloaded tracks or waypoints, selecting the “Update View” option renders these items.
The Reset View item does not clear the downloaded data from the map; rather it resets the
original view to encompass the world map as shown after an Update View command. The
Options item pops up a configuration dialog where the user may set options such as
communications ports, and upload server information.

The major component of the application is the viewing area that displays the GPS data in
relation to the rest of the world.

Future Work

GarminGPSTool can benefit from future work in a variety of areas. Currently, the
application is limited to machines that have support for the JavaComm API and a Java2
virtual machine. At the moment, this support is primarily found in personal computers.
This limits the utility of the current application, as personal computers are generally not
too portable, thus functions offered by this application are lost in a portable environment.
This application has the potential for larger usage if it were ported to portable platforms
such as PocketPC or PalmOS. This is a straightforward improvement that mainly consists
of replicating the functionality in the portable environment. Java runtime environments
and libraries for the embedded platform will enable straightforward ports, or developers
may port the code from Java to a platform-specific language like Embedded Visual C++.

In addition to porting the code, this application’s utility can be greatly enhanced through
the development and deployment of translation servers that would serve to translate the
data from the GPS in vendor-specific data types to more general data types used
elsewhere. Translation servers are described below, but in this instance a server that can
intelligibly translate from the waypoint and track vocabulary that GPS receivers speak to

29

Communications
Stack

Garmin Packet
Encoder/ Decoder

Serial Port Connection

to Garmin GPS Receiver

Internal
DOM-Based

Storage

DO
M

 E
le

m
en

t
No

de
s

User Interface
Event Handler

Commands to be sent

to GPS Receiver

SVG Display
Layer

SVG Content Generated

from DOM Tree

E
xp

or
t t

o

G
M

L
Fi

le

GML File

GML GDTP
Generator

Ex
po

rt
to

VR
M

L
Fi

le

VRML FileSVG File

Ex
po

rt
to

SV
G F

ile

Export to

GDTP Server

Internet

G
DT

P
Up

lo
ad

Re
qu

es
t

Figure 3.2: This diagram displays the major components of the
GarminGPSTool application. Input events from the Swing interface are
translated into commands sent to the GPS receiver and the data from the
receiver is translated into XML nodes that are added to the internal DOM
data structure. From the DOM structure, the SVG user interface is
updated. The DOM data structure also facilitates easy encoding into other
XML data file types, such as GML and SVG. The contents of the DOM
tree can also be uploaded to a GDTP server. The structure makes it easy to
add export support for other file types such as VRML.

30

a more general vocabulary spoken by other applications, such as roads and places, would
greatly enhance this application’s utility. Furthermore, more attention to authentication
and security needs to be applied to this application. The current implementation does not
account for security issues, and implementations are generally insecure.

The application can also be improved by a more thought-out approach to representing the
visual data. The application currently tries to impose a single method for viewing data on
the map, and this solution is hardly optimal for any viewing of the data. This situation can
be greatly improved by embedding intelligence in the application that enables the
application to determine which methods of viewing data are most appropriate. For
example, when looking at data on a global scale, a visual interface that focuses on the
more general location of the data is more useful than one that focuses on the exact
location. The converse is true, as viewing happens more on a smaller scale, exact details
become more important. A user interface that took these considerations into account
would greatly enhance the utility of the program.

Finally, the ability to download data from GDTP servers on the Internet and upload that
data into the actual GPS receiver would enhance the usefulness of this application.
Currently, support is only in place for uploading data to GDTP servers. This support is
primitive, as it does not attempt any translation between Garmin geographic types and
general geographic types. A translation server would complement the application well, as
it would be able to transform types such as roads and rivers into the simpler types
supported by the receiver such as tracks and waypoints.

31

Chapter 4:

MycoMap

MycoMap is a web-based application that is intended to demonstrate the usefulness of an
open GIS platform in the areas of ecology and taxonomy. Simply put, MycoMap is an
online catalogue of the locations of various mycological species throughout the United
States.

In contrast to a catalogue built by a single party, MycoMap is unique in that it uses
existing trends and organizations in order to collect data. Mycology, the study of fungal
species, is hobby and serious pastime for people around the world. Typical mycological
activities include foraging for species in the wild, collecting samples of the species, and
determining the taxonomy from the samples collected. MycoMap attempts to harness
these activities by providing individual mycologists (amateur and professional) with an
easy to use online tool that assists with cataloging, searching, and aggregating
mycological data.

MycoMap is implemented as a web-based application. It is designed to be accessible
across a range of platforms and browsers. The intended audiences of MycoMap are
individual mycologists and mycological clubs. MycoMap stores and aggregates the data
provided by the participants to provide a more comprehensive and complete picture of
mycological populations than any single collection can. MycoMap provides incentives
for mycologists to submit data by providing a number of features. The most important
feature is a map-enabled application that allows mycologists to pinpoint the location of
specimens without the use of specialized GPS equipment. MycoMap also provides quick
and easy ways for mycologists to manage their collection data. Their data can be easily
searched and organized based upon a variety of criteria, such as species, dates, and
locations. Furthermore, MycoMap is designed to provide the foundation from which an
online mycological community may grow. Users of the system can interact through
discussion forums and by sharing collections. The combination of ease of use and
community features is a strong incentive package to encourage use of the system.

Implementation Details

For the most part, MycoMap is a straightforward and typical community-centric Java
Servlet application. Features such as the discussion forums and user logins are typical
implementations that are fairly common across dynamic, community-driven websites.
These will not be discussed in detail, but the actual source-code implementation details
are available in the accompanying CD-ROM for interested readers.

32

Figure 4.1: This is an illustration of the MycoMap application generating
a map for later use. The map shown here was generated using the GDTP
server described earlier and the MycoMap web-mapping software. This is
a twenty-five square kilometer rendering of Princeton, NJ.

33

The interesting functionality within MycoMap with respect to this thesis is the mapping
technology used to give users a convenient method for identifying the locations of
species without knowing the latitude and longitude. The approach used by the mapping
component of MycoMap is an intuitive interface where a user can select their general
location and zoom into more specific areas until the desired resolution is found where the
user can specify the location of the specimen.

The core technology that provides this functionality is a web-mapping component based
upon a simple map-generation application. The map generator is a Java servlet that takes
three parameters to generate a map: a center point longitude, center point latitude, and the
range in kilometers that the map will span. A GDTP server provides the data used to
generate the base map. This data consists of geographic features collected by the Census
like roads, cities, and waterways.

The web-mapping component can be broken into three major functional components. The
first component is responsible for parsing the HTTP request sent to the servlet container
and extracting the location of the center point of the map and the kilometer range that the
map will cover. Then, the component is responsible for determining the translation of the
kilometer range into the correct latitude and longitude range that will be used to construct
a bounded request to the GDTP server. With respect to the latitude, the ratio of degrees to
kilometers is fixed, as the arc-length from one degree of latitude to the next is always the
same, regardless of the longitude. With respect to the longitude, a more complex
translation is necessary as the ratio of kilometers to degrees of longitude shrinks as the
latitude moves away from the equator. Once the translations are complete, a bounded
request encapsulating the area specified by the original query is constructed.

The second component of the web-mapping application is responsible for sending the
GDTP request to a GDTP server and receiving the result of the request. The server’s
response is saved in a temporary file and the application applies an XSLT transformation
that translates the GDTP response document into an SVG file.

Once the SVG file is generated, an image transcoder is applied to the file in order to
translate the SVG file into a more accessible format. In this case, the SVG output is
translated into PNG format. Once the transformation from SVG to PNG is complete, the
PNG file is sent to the requesting client in order to fulfill the original HTTP request sent
to the servlet.

This component provides the visualization of geographic features in a specific locale, but
does not handle operations such as navigating over an area. Navigation features, such as
zooming and panning, are provided by another servlet that uses the web-mapping
component. A client using this servlet to generate and navigate through the maps
provides the servlet with the location of the initial area to be examined and the range of
the area. The navigation servlet displays an HTML page containing a hidden form and a
map generated by the web-mapping component. The image is displayed as a clickable
image map. When the map is clicked, embedded JavaScript code captures the click
events and stores the location of the click within the hidden form. After the location is

34

stored, the form is submitted and a new page is generated. The new page has the location
of the first map and the range of that map in addition to the coordinates of the imagemap
click. Using this data, the application is able to translate the coordinates of the imagemap
click into a new location relative to the original map. Furthermore, the range of the new
map is decreased. The translated location and decreased range is provided to the web-
mapping component, which generates a new map. The effect obtained is a zoom, where a
user repeatedly clicks on a map and a new map is generated that zooms in on the clicked
area. This process continues until the range of the query is small enough to determine the
location of mycology specimens. Once this point is reached, the coordinates of the
location are saved in the MycoMap database in an entry associated with the user to
rebuild the map. The latitude, longitude, and final range are saved.

With the saved map data in the MycoMap database, users are able to build a list of maps
of areas where their activity is focused. Using these maps, users are able to easily input
their specimens. To input location data of specimens, users recall a previously saved map.
An imagemap of the area is displayed. Users may click the map where the specimen was
found and the application translates the click positions into actual physical locations.

This physical location data is used to generate a create feature request to a GDTP server
that is hosting the location data for these species. A create feature request contains not
only the location of the species, but also information such as the species name, the
discoverer of the specimen, the time of discovery, and other metadata. This data is stored
within the GDTP server in order that it can be easily mapped and is also available to
other applications outside of MycoMap. Within MycoMap, generating maps of species
on top of base maps is accomplished using the web-mapping component above and
including mycological feature types within the feature list of feature types to be returned.

Non-Technology Considerations

The implementation of this application also has a number of non-technology issues that
must be considered. The primary issue deals with how the data collected by MycoMap
may be used and which parties should be allowed access to the data. Normally, this
would not be an issue, but since more complete catalogues of locations and species types
can enable more effective harvesting of specimens, great care must be taken in order to
guarantee that the data is used responsibly. Furthermore, since some users may wish to
restrict the data they provide to certain types of organizations, a layered classification of
data is necessary, should the operators of MycoMap not claim ownership and complete
control of the data being submitted within the terms of use. Some users may wish to only
allow themselves access to their data, while others may be more liberal by allowing more
parties to use their data. In this case, a rigorous application of the security framework
hooks can be used to complement an existing data use policy. Since the mycology
community is quite sensitive to these issues, an unambiguous data use policy must be
provided in addition to the actual implementation.

35

Another issue is whether the precision of the location of the specimens should be
artificially degraded in order to preserve the environment that hosts the species. Since
some species of mushrooms are quite rare, it is natural that humans would seek to
examine these species in the wild. However, since too many visitors to a certain location
will have an adverse effect on the environment, it may be prudent to artificially degrade
the precision of the location of the specimens to discourage others using the database as a
means of finding and visiting specific specimens. This consideration should also be taken
into account with the data-use policies.

Future Work

MycoMap offers a wide variety of areas that can benefit from future work. The most
immediate is to generalize MycoMap so that it can be used to track species regardless of
kingdom affiliation. In this vein, a more generalized MycoMap application can serve as
common standard across similar applications. By making the application and interfaces to
the application more general, the potential for a large multi-species information tool can
be realized.

In the specific MycoMap application, future work in the areas of usability and “look and
feel” would benefit the application immensely. By making the application more usable
and more intuitive, it becomes more accessible to more people. In addition to usability,
reengineering MycoMap as a language-neutral application with the appropriate
translations would increase its utility worldwide. Mycologists worldwide would be able
to contribute to the database, making the system truly comprehensive.

Furthermore, efforts to enable mobile devices the ability to access MycoMap is a large
area for future work. Comprehensive functionality may be provided at the browser level,
but limited functionality could be effectively implemented in handheld devices. For
instance, tools for managing collections can be made available through a web interface,
but functions such as submitting locations could be implemented on palm-top computers.
These implementations would be dependent upon establishing an interface to the main
application using technologies such as SOAP or .NET.

36

Chapter 5:

KeyHole

KeyHole is a prototype portable application that provides a real-time accounting of the
location of a device running KeyHole software. KeyHole utilizes this open GIS
architecture by using the network servers as a storage medium where the current and past
locations are recorded. KeyHole uses a combination of a simple graphical client on the
PocketPC platform21 in conjunction with a servlet-based application that uploads the
location data to a GDTP server and renders a vector map containing the location and
surrounding features.

Implementation Overview

The servlet component of KeyHole is very similar to the graphics-generating component
of MycoMap. The PocketPC component periodically uploads its location data by
querying the servlet using a URL containing the current location embedded in the HTTP
query string. The servlet component parses the query string for the location data,
generates a custom GDTP query that creates a new location point on the GDTP server.
After the successful creation of the feature, the servlet issues a response confirming the
creation of the location point

The PocketPC component is an Embedded Visual Basic application that is connected to
an NMEA 081322-enabled GPS receiver. The PocketPC application periodically updates
internal variables containing the current longitude and latitude information. During user-
specified intervals, the application contacts the servlet component via a wireless network
component, updating the location data periodically.

PocketPC Component Implementation

The PocketPC component23 consists of a Compaq iPaq PocketPC device upgraded with a
PCMCIA expansion pack containing a PC card with an RS-232 9-pin interface and the
other card slot containing a cellular modem. The serial port is connected to a GPS
receiver that can communicate via the NMEA 0813 protocol. The cellular modem is
connected to a Nokia phone connected to AT&T’s national cellular network. The GPS
unit provides current location to the iPaq, and during set intervals, the iPaq communicates
via the cellular network and local ISP to upload the coordinates to the KeyHole network
component.

37

Figure 5.1: This is a screenshot of the KeyHole application running on a
PocketPC 2002 emulator. The actual device used is a Compaq iPaq.

38

The software on the iPaq device is an Embedded Visual Basic application running on the
PocketPC 2002 platform. The iPaq Visual Basic application uses standard ActiveX
components to receive data via the serial port and send data over the cellular network.
Internally, the application consists of three main components. The core component is the
form containing the user interface and the internal variables that reflect the state of the
machine. In addition to the form, two Timer objects are used to periodically handle
certain operations. The first Timer object acts in intervals of one hundred milliseconds.
Every interval it receives NMEA strings that have been buffered from the serial port and
it parses the strings to update the local time and location variables. The second timer
object operates in intervals of five minutes. Every interval it reads the local location
variables and generates an HTTP query that informs the servlet component of the
device’s location.

The initial designs of this client did not have a server component, and the device would
communicate with a GDTP server via normal GDTP requests to upload coordinate data
to the server and obtain data about geographic features in the current locale. However,
since the processing power required to transform a GDTP document to a graphical image
was too high for the handheld devices, these types of operations were offloaded to an
intermediate server that would generate the images then transmit the images to the client.
Furthermore, since tools that are required for GDTP to image transformations, such as
XSLT transformer and rendering libraries, are not currently available for the PocketPC
platform, offloading the image generation to an intermediate server provided a rich suite
of tools that sped the client development and provided an initial implementation of the
translation server concept. Many of these features are not currently used by the Visual
Basic component, but are implemented with the expectations that the PocketPC platform
will soon be expanded and able to take advantage of the rich functionality offered.

Intermediate Server Component Implementation

The intermediate server component24 assists the local PocketPC client with translating
GDTP to a graphical format. Since the intermediate server is the software that
communicates with the GDTP servers, efficient communication between the intermediate
server and PocketPC client is achieved by allowing the PocketPC client to provide
location and other data to the intermediate server via HTTP GET and POST requests. In
this respect, the intermediate server is merely a web application that translates HTTP
requests into GDTP queries and returns to the client images via HTTP. Used in this
manner, the intermediate server is another class of application discussed below, called a
translation server.

In practice, this component is implemented as a Java servlet application that receives an
HTTP query string, parses the query string and builds a series of GDTP queries, then
queries a real GDTP server. Upon the completion of the requests, the intermediate server
can translate the results of the GDTP request into a graphical file, which can be returned
to the PocketPC application for viewing. The implementation is straightforward and is
almost identical to the web mapping components that are used in MycoMap. The

39

difference between this component and the MycoMap visualization component is that
this component begins with sending GDTP upload requests to the server before sending
bounded feature requests. In almost all other respects, the two components are identical.

Usage Details

Usage of this application is straightforward. In the main frame of the application, a
number of configuration options are exposed that allow the user to dictate behavior of the
application. The user can change the username associated with the tracker, the associated
password, and the URL that the tracker uses to upload location information. Once this
information is set, the user can enable and disable tracking by using the start and stop
buttons.

For this application to function successfully, it assumes that the user has an existing
Internet connection and that the GPS unit is configured as needed. The application has no
facilities for doing either task.

Future Work

This software application can benefit from enhancing the functionality of the PocketPC
application, creating derivatives of the application that run on embedded platforms, and
eliminating need for the intermediate server.

Enhancing the functionality of the PocketPC client can be accomplished several ways.
The most obvious enhancement would be to include more data that is uploaded to the
server. The current client only uses a small set of the data provided by the NMEA
protocol. Support for altitude, heading, speed, and even satellite status would give users
tracking the location of the device more information about the device than just the
location. This data can be used to paint a more complete picture about the device and its
location. When coupled with other geographic data, information about the weather and
surroundings of the device can be surmised. For instance, if the application were to
upload the information about satellites and signal strength, other users accessing the data
could reasonably guess the weather conditions around the device. If the signal strength
was weak, despite being in an open area, observers could reasonably surmise that the
device was under overcast or rainy conditions. If the signal strength was strong, despite
being in the midst of a dense city, observers could reasonably guess that the device was
under clear conditions. This idea of a third type of data being obtained from two
unrelated types of data is potentially very powerful, and should be explored further along
with the types of data that can be obtained this way and which types of data can produce
the new types.

40

KeyHole PocketPC
Component

Cellular Network

PocketPC with
attached GPS

Cell phone

KeyHole Application
Server

PPP / Internet

Internet

GDTP Server

NMEA 0813

From GPS

NMEA
Parser

KeyHole
Internal

Variables

URL Generator
HTTP Request Over

Cellular Network

Figure 5.2: This diagram displays the architecture of the KeyHole system.
The top diagram displays all of the components used to record locations.
The bottom diagram details the internal architecture of the PocketPC
component.

41

An additional enhancement to the functionality of this application would be the inclusion
of security technology. The current implementation ignores the security and privacy
considerations of the device and uses cleartext protocols that are easily intercepted.
Features such as SSL tunneling for communications between the PocketPC application
and the intermediate servers and the GDTP servers would go a long way to improving the
security of this application. On the server side, a clear and precise statement of the
security goals of the system must be articulated and implemented. Some systems will
support open access to some trackers, and others will be more restricted. The appropriate
analysis of the needs of each and how this is implemented on the application and server
levels must be undertaken before deploying this technology in privacy or security-
conscious environments.

Furthermore, the application would benefit from further work by taking advantage of
image display technology that is available to Embedded Visual Basic applications.
Originally, the application was intended to provide a graphic of its current location, but
this functionality was not implemented in the client, as there were no standard libraries
for displaying SVG, GIF, or even JPEG files within Embedded Visual Basic. It is only a
matter of time before these components are made available. Once these are available,
functionality in the intermediate server implemented with the expectation of being able to
generate and visualize maps can finally be used.

Another area of further work involving this project is expanding the range of platforms
that the PocketPC software runs on. In its current form, it is limited to a PocketPC
platform with an Embedded Visual Basic interpreter. This software could be made
reasonably portable across the entire range of Windows CE platforms (PocketPC,
HandheldPC, AutoPC, consumer electronics) by rewriting the application in a lower level
language such as C or C++ and compiling binaries for the different CPUs that support
Windows CE. For example, to enable a system that can track the location of cars, this
application can be rewritten for the AutoPC platform with the appropriate adjustments
made for user interfaces and connectivity. A party with an interest in tracking cars like
some of the rental car companies would be able to take the application and integrate it
into existing AutoPC devices in the vehicles.

In the cases where an existing platform to run the software is not available, it would be
feasible to take the rewritten application and design a custom hardware device around the
application. This device would be relatively small, contain wireless networking
capabilities, and include an embedded GPS receiver. By eliminating unnecessary features
such as the user interface and backlit LCDs, it would not be difficult to create a
programmable device that can be manufactured on a large scale and sold cheaply. Such
devices would be used to add this location tracking capability to things like vehicles,
briefcases, and personal accessories such as children’s watches. By building upon an
open and consistent platform for geographic data storage and retrieval, vendors of such
devices stand to benefit by eliminating the costs of developing a dedicated proprietary
architecture and providing an accessible interface for third-party developers.

42

Finally, the elimination of the intermediate server will eliminate the complexity of the
system by reducing the necessary components from three to two. Further work in this
area is heavily dependent upon further work elsewhere. In order for the portable devices
to function as full-fledged GDTP clients, advances in XML technology on handheld
platforms must be obtained. The missing technology that would eliminate the
intermediate server is a fast and efficient XSLT parser for handheld platforms. If this
were present, a handheld client could issue direct requests to the GDTP server then use
XSLT to transform the GDTP responses into SVG, which is viewable on the client.
Moore’s Law and the current interest in XML technology on handhelds should make this
component a reality in a reasonable amount of time.

43

Chapter 6:

Platform Extensions and Future Work

The applications presented in this thesis are several implementations of ideas that utilize
this architecture for sharing geographic data. These applications are only a small sample
of the potential application space. In the following pages, extensions to this architecture
and applications that facilitate these extensions will be described.

GDTP Extensions

For the GarminGPSTool, KeyHole, and MycoMap applications, the current feature set of
GDTP is adequate to implement the applications. However, there are many applications
that would require additions to the current GDTP protocol in order to work on the
platform. Extensions such as variable shapes for bounded requests, a transaction model,
and support for GDTP proxys would allow new classes of applications to be built on the
platform. Some of these applications will be described later in this section.

The current method of querying for features within a certain area is accomplished by
issuing a boundedRequest query with the parameters of the opposite corners of the
rectangle containing the features. This is adequate for many applications such as the ones
described above. However, a number of applications would benefit if this restriction were
lifted. One can imagine applications that use queries where the client specified a center
point and a radius and features within the defined circle are returned. This type of
extension is a subset of the larger number of topological and geographic operations that
could be included as integral parts of an expanded GDTP protocol. Inclusion of these
functions could also conceivably address some of the problems of features being within a
bounded area, but not being returned as no defining points are within the bounds of the
area. Inclusion of these types of functions in the server would benefit the overall
efficiency of the platform, as the operations now must be done on the client side with the
client requesting many extraneous features to satisfy the request. Including these features
into the server can be accomplished by integrating or implementing a
geographic/topological function library in the Java side of the server, or storing the
geographic data within a spatially aware database that has support for such queries.

A notable feature that is missing in the current version of GDTP is a transaction model.
Because an ACID-compliant transaction model is not present within the server, rollbacks
during crash recovery are impossible. From the perspective of the client, the transaction
support in the Web Feature Server specification would be well suited for GDTP.
Implementation of this transaction model could consist of either tight integration with a
backend database with strong transactional support and the client support to enable it, or

44

through the use of internal logging of operations to disk that can be used in the event of a
crash, or the final solution could consist of a combination of the two.

Finally, the support of a proxying model that is similar to the one found in HTTP could
result in the production and deployment of a new class of applications utilizing GDTP
that act as both clients and servers. An immediate application of these features is the
creation of caching proxy servers that could be deployed as part of the architecture in
order to minimize the number of redundant queries sent to servers. Another application is
a transformation server where the data format utilized by the client is different than the
one provided by the server. By issuing a proxy-request through a transforming proxy, no
changes in the way the client or server views the data is required. This is described in
more detail below.

A number of other features could conceivably be included within the GDTP protocol.
The ones described above do not exhaust the list of valuable features. It is expected that
the protocol will be required to grow and evolve as the needs of spatial data users and
their applications change.

Caching Proxy Servers

Currently, one of the problems that have been encountered in this project is the fact that
geographic requests require an order of magnitude more computing power and memory
than traditional and web requests. Every reasonable effort has been made to eliminate
bottlenecks and enhance performance, but at the present, these servers are not nearly
efficient enough to be placed on a public Internet and queried by multiple applications in
real-time. In order to currently provide a robust and responsive enough architecture for
the usage envisioned by this paper, significant investments in hardware or software are
required. This disturbing trait runs counter to the intent of this project that barriers for
allowing everyone to share geographic data should be as small as possible.

An alternative approach to utilizing expensive hardware and software is to build
performance into the network itself by providing caching servers that replicate the data so
that requests can be served efficiently through a network of caches rather than invoke an
expensive query on the server. This approach obviously has a number of limitations, but
it also shows a decent amount of potential.

One of the most fundamental limitations is that not all data can be cached as well as other
data. For example, caching the location data that was involved in the KeyHole
application would be a bad strategy because the data is updated much faster than a cache
would be. Relying on a cache of this data would effectively raise the update interval from
the original interval provided by the client to the update interval in the cache.
Furthermore, while individual features can be cached easily and efficiently, areas of
features are less easily cached. Caches can be coded with spatial intelligence with respect
to caching bounded areas, but the cache must also be aware of the areas that are cached
and which are not. The spatial intelligence can be improved to accommodate this fact, but

45

GDTP Server

Caching Server
GDTP Server

GDTP Server

Client

Client

Client

Caching Server

Caching Server

Caching Server

GDTP Server

GDTP Server

GDTP Server

GDTP Server

GDTP Server

GDTP Server

Caching Server

Caching Server

Caching ServerClient

Client

Client

Client

Client

Client

Client

Client

Client

Client

Figure 6.1: The top figure illustrates how a caching server can reduce the
amount of traffic (represented by arrows) directed to the servers by
caching recently accessed features. The second figure illustrates how an
architecture incorporating caching servers serves to act as an intermediate
layer to the core feature servers.

46

as more intelligence is added within the cache, resulting in a slower, more capable cache.
If the area of features that is cached becomes significantly large, the question of whether
it makes more sense for the cache to remain a cache or for the cache to become a full
mirroring GDTP server.

The nature of geographic data also offers some potential for caches. One property of the
data is that much of the data is effectively immutable and rarely changes. This type of
data would benefit from caching as the cache has little work to do in order to provide
current information. In this respect, the cache serves as an effective mirror of the original
server, and periodically checks if the feature data is current. Furthermore, an intelligent
cache can exploit that fact that certain geographic areas are of more interest to a larger
user segment. A cache can exploit this by biasing its performance and providing
preferential treatment to data that is requested often.

A number of possibilities exist with respect to applying caching actors in this architecture
to enhance performance and reliability. A fair amount of future work can be devoted to
determining the best behavior that the caches should implement, and how caches can
efficiently cache data that is not necessarily single unrelated features, but whole areas of
related and interdependent features.

Translation Servers

A translation server is the result the idea that certain types of coordinate systems are
better suited for representing different types of data. For example, representing features
that differ on a scale of meters is inefficient using the traditional degree notation because
of the amount of precision required to represent the location is largely wasted, as the
more significant digits are the same. In these cases, a more localized coordinate system
would be more useful and efficient. This architecture can support this idea by providing
uniform support to different coordinate systems through the use of translation servers.

A translation server is a simple piece of software that acts like a proxy because it tunnels
the data from the original server to the original client, but it differs from a vanilla proxy
as it has the ability to do coordinate transformations as the data is tunneled. For example,
Garmin GPS receivers store location points using an integer system that is simpler than
the traditional degree system, and arguably more efficient in some cases. It is not
unimaginable that some servers would support this coordinate system instead of the
traditional one. People using software designed to operate with the traditional coordinate
system can use the data contained in the alternative system. In order to facilitate
interoperability, a client could conceivably route its queries through a translation system
that requested the data on behalf of the client and translated the coordinates before
returning the data to the client. Such a piece of software would be simple to implement,
and could be reasonably efficient. While the alternative to this approach is to encode the
transformations within the servers themselves and allow the clients the ability to specify

47

GDTP Server Translation Server Client

UTM GDTP

Request

Degrees GDTP

Request

Client Request

Network
Handler

Client Response

XML
Parser

Client XML Request

Client XML Response

X
M

L
N

od
es

Translation
Engine

XML
Parser

X
M

L
N

od
es

Server XML Response

Server XML Request

Network
Handler

Server Response

Server Request

XM
L

N
od

es
X

M
L

N
od

es

The translation engine walks the XML DOM structure and
when gml:coordinates nodes are encountered, the
translation engine applies a transformation that transforms
the client coordinate system to the server coordinate system
and vice versa.

This engine can be further extended to do an XSLT
operation that would transform one set of features into
another. This could transform complex data types such as
streets and rivers into simpler data types such as tracks and
waypoints that are used by simpler client applications.

Figure 6.2: A translation server can translate between one coordinate
system into another. Furthermore, translation servers can be implemented
to translate from one GML data type to another by utilizing XSLT
technology.

48

the coordinate encoding desired, the approach using translation servers is more flexible as
it allows new coordinate systems to be deployed and used without requiring server
software to be updated and existing data collections to be manipulated. From a
performance standpoint, it may be beneficial to “outsource” the coordinate translations as
servers become more overworked and in-server translations would only slow the
response from servers to clients not requiring translated data. Since specialized
coordinate systems are most likely to be used by only a small subset of applications,
including translation capabilities in other software actors would limit the complexity of
the servers without disallowing the use of these alternative systems.

Aggregation Servers

It is not hard to imagine that as more people start using GDTP software to share
geographic data that the data landscape becomes richer and more varied. However, one
problem is that as new servers are put online with new data, the task of knowing which
data is available and contained on which server becomes an issue facing server operators
and client application developers alike. The situation would be much like the World Wide
Web without search engines – users would only be knowledgeable of a small set of all the
servers available. One solution to this problem is aggregation servers.

Aggregation servers would conceptually function much like sites like Yahoo! that
aggregate web content in order to provide visitors the ability find the respective site
hosting the information. Aggregation servers would aggregate the content and provide a
virtual collection of features that is actually resident on other servers. This could be
accomplished transparently where the server acts as a semi-transparent proxy and relays
the identity of the server to the client, or the proxy could be opaque and provide the data
to the client as if it were the original feature owner.

An ideal application of this concept would be when the government shared road data for
public use. Since maintenance and construction of roads is primarily a state
responsibility, the state is the party best equipped to keep and maintain a database of
roads. However, since there is an interest in a comprehensive national collection of roads
for purposes such as making national maps, the federal government could represent the
separate collections of roads as a single large collection through an aggregation server.
One can also imagine communities that have complementary collections of data forming
communal aggregation servers in order to advertise their data and facilitate access to the
data.

49

Chapter 7:

Conclusion

The system described above has accomplished some of the goals outlined in the
introduction. It is a platform-independent architecture for sharing geographic data across
servers and applications. A number of client applications have been implemented that
illustrate the features of the platform and show how different applications can use the
platform in different ways. However, due to time pressures, the platform has not been
developed to the point of being a completely viable application for general GIS systems.
Work on solidifying the protocols and underlying components is necessary before any
widespread adoption can take place. Furthermore, this project offers a wide variety of
future work that can be done upon the server and client applications.

Some goals realized by this project that were not explicit from the beginning involved
using new technologies such as XML and SVG as fundamental components of a complex
software system. In this respect, this project has illustrated how these technologies can be
effectively used in ways unintended by their creators. A good example of this is using the
XML DOM tools as the internal data structure of the Garmin application. This type of
activity shows how technologies can be used outside intended bounds to achieve new
effects. In some respects, this concept is the central theme to this project and its products.
By creating a general technology that is not artificially constrained by how the creator
feels it must be used, creative programmers can achieve ends much wider than intended.

Finally, this project should be viewed as an initial attempt to tackle parts of the problems
of creating and deploying a global unified geographic data space. This project tackled
some of the implementation problems, but some of the larger problems in achieving this
goal were not addressed. Specifically, determining how to format data across applications
and data types will be particularly challenging. Furthermore, the task of creating
compatibility across servers and applications will be challenging from both a technical
and political standpoint. The technical problems will be less difficult than the political
ones as standards emerge that encourage compatibility, but the political problems of
convincing vendors to reverse the trend towards more focused and proprietary
architectures will be potentially difficult. Hopefully by releasing open tools available
under open source licenses, geographic communities of users will emerge and serve as a
benevolent force towards establishing a unified geographic data space.

50

Appendix I:

Acknowledgements

The author would like to thank the following people and groups that were instrumental to
this project’s research. Without the help of the parties below, this thesis would not have
proceeded as smoothly as it did.

Professor Brian Kernighan – Advisor

Professor Andrea LaPaugh – Second Thesis Reader

The Apache Foundation: Batik, Xalan, and Xerces Groups – Provided Major
Technology Components

Rob Hranac, VFNY – OpenGIS Contact

OpenGIS Consortium – Provided GML and WFS Specifications

Five Blues Lake National Park – Provided Testing Grounds for Early
GarminGPSTool Releases

Jaguar Creek – Provided Electricity and a Quiet Environment to Program in Belize

Princeton Round Table Fund – Provided Funds to Purchase Equipment

51

Appendix II:

Guide to Bundled Software

The thesis preceding this appendix is only a small part of the total scope of this project.
The majority of the details with respect to implementation are available within the source
code available on the accompanying CD-ROM. Since changes in the software and
hardware platforms contribute to a situation where digital content often has a very limited
lifetime, every effort has been made to include the software used during the course of this
project and files that are encoded in open formats that are expected to best weather
changes in a technical environment.

Third party applications released under open source licenses have been included on the
CD-ROM under their respective licenses. Other applications released under alternative
licenses, but freely available on the Internet at the time of writing have been included on
the CD-ROM under the fair-use provisions of United States copyright law. Use of this
software may be restricted and users are encouraged check the status of the licenses
before using the software. These software packages are included in the ‘Third Party
Applications’ directory so that future parties can compile and run the programs developed
as part of this thesis.

The source code to project components such as the GDTP server has also been included.
Instructions for compiling and running the respective software packages are included in
the README files in each directory. Please note that these software releases are
effectively development snapshots and that while the code will compile and run, it has
not been thoroughly audited and bugs and development artifacts are present in the code.
For more polished and up-to-date releases, check http://aetherial.net for new code.

.

http://aetherial.net/

52

Appendix III:

Bibliographic Notes and Endnotes

This document makes reference to a variety of terms, technologies, and implementations.
The notes below explain some of the references and provide URLs for further research.

1 ‘GIS systems’ is technically a redundant term, but GIS is used as a term to describe
geographic technology, so the usage ‘GIS systems’ occurs often in GIS discussions.

2 Open GIS systems in this respect are distinct from the OpenGIS Consortium. An open
GIS system uses open and documented protocols to communicate between clients and
servers. For more information about the OpenGIS Consortium, visit
http://www.opengis.org/.

3 When possible, the most recent version of the Java programming language was used.
All Java code produced during the course of this thesis used the Java 1.3/1.4
programming tools. More details about Java2 can be found at http://java.sun.com/j2se/.

4 SVG is a W3C standard for vector graphics. More information is available from
Adobe’s SVG site at http://www.adobe.com/svg.

5 Batik is a product of the Apache Foundation’s XML efforts. It provides native Java
support for SVG-based display widgets in addition to transcoder tools that convert SVG
to other graphic formats such as PNG and JPEG. Batik downloads and documentation
can be found at http://xml.apache.org/batik/index.html.

6 The GML 2.0 specification is online at http://opengis.net/gml/01-029/GML2.html.

7 MySQL is an open source relational database system. More information about MySQL
is available online at http://www.mysql.org.

8 InnoDB is an alternative database backend that can be exchanged with MySQL’s
default MyISAM backend. InnoDB is much faster than MyISAM and provides
transactional and performance features that are lacking in the standard MySQL
installation. Information about this backend can be found at http://www.innodb.com.

9 The source code of the development server has been included with the accompanying
CD-ROMs. It should be noted that the source code provided is a development snapshot of
the server used in this project. Major functionality is implemented, but the source code

53

has not been polished or packaged in a manner to facilitate easy deployment of this
software. A more polished and tested release will be made available at http://aetherial.net.

10 The bulk of the web interface is implemented in the webAdmin.java and
htmlPages.java source files. At the time of writing, the web interface is still under
construction and may contain bugs and other issues.

11 This functionality is primarily implemented in the geoserverXMLHandler.java and
geoserverRequest.java source files.

12 Xerces is a programming toolkit for Java and C++ provided by the Apache Foundation.
It is used extensively throughout the software in this project. More information is
available online at http://xml.apache.org/xerces2-j/index.html.

13 TIGER/Line is the system used by the United States Census to obtain, store, and
disseminate geographic data. More information and data files are available online at
http://www.census.gov/geo/www/tiger/index.html.

14 XSLT is an XML technology for transforming XML documents of one type into
another. This technology was used extensively to transform GDTP and GML documents
into SVG. Apache’s Xalan XSLT transformer was used throughout the project. More
information about Xalan is online at http://xml.apache.org/xalan-j/index.html.

15 Web Feature Server is an application protocol that is being developed by the OpenGIS
Consortium. Its features and function are almost identical to GDTP. At the time of
writing, the WFS specification is still in the design and testing phase and no public
documents have been released.

16 Secure Socket Layer (SSL) technology is security technology that allows for encrypted
tunnels across public networks. More details about SSL is available online at Netscape
Communication’s website at http://www.netscape.com/security/techbriefs/ssl.html.

17 Garmin manufactures a variety of GPS receivers. More details about Garmin GPS
receivers is available online at http://www.garmin.com/.

18 The proprietary protocol specification used by Garmin GPS receivers is online at
http://www.garmin.com/support/pdf/iop_spec.pdf.

19 The source code to the GarminGPSTool has been included on the accompanying CD-
ROM. For more recent versions of this application, check http://aetherial.net.

20 Information about the JavaComm API is provided by Sun Microsystems at
http://java.sun.com/products/javacomm/.

54

21 The PocketPC platform is one of Microsoft’s embedded platforms that uses Windows
CE technology. The primary development languages for the platform are Embedded
Visual Basic and Embedded Visual C++. Information about the PocketPC platform is
available at http://www.microsoft.com/mobile/pocketpc/default.asp.

22 NMEA 0813 is a serial communications protocol implemented by many GPS
manufacturers for use in environments such as ships and airplanes. NMEA 0813 devices
provide a steady stream of data over the serial port that is translated into information such
as current location, satellite status, and bearing.

23 The Embedded Visual Basic project files for this application have been included on the
accompanying CD-ROM along with the servlet component. Routines for reading and
parsing NMEA 0813 strings were adapted from the GPSBoy application by Joshua
Trupin. Project files for GPSBoy is included in the third party software section of the CD.
For more information about GPSBoy, visit
http://msdn.microsoft.com/msdnmag/issues/01/01/GPS/GPS.asp.

24 The source files for the servlet component are available on the accompanying CD-
ROM.

